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NON-LINEAR VIBRATIONS OF A BEAM RESTING
ON A TENSIONLESS WINKLER FOUNDATION
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The forced vibrations of an elastic beam resting on a non-linear tensionless Winkler
foundation subjected to a concentrated dynamic load at its centre are described in this
paper. The problem is a non-linear one because of the tensionless character of the
foundation and the non-linear term in the foundation model. A non-linear governing
di!erential equation for the forced vibrations of the beam is derived in matrix form by
employing the Galerkin method. The free vibration mode functions of the completely free
beam are adopted as the co-ordinate functions of the displacement function of the beam.
Firstly, the static solution is obtained and the contact length is determined. This is then used
as an initial con"guration of the forced vibrations. The results which represent the static and
dynamic responses of the beam for linear and non-linear cases are presented in the Figures.
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1. INTRODUCTION

The response of an elastic beam supported by an elastic foundation has been studied by
many investigators. Di!erent foundation models such as Winkler, Pasternak, Vlasov,
Filonenko}Borodich have been used in these studies [1]. But the Winkler model, in which
the medium is taken as a system composed of in"nitely close linear springs, is the simplest
one and is often adopted. It is well known that, in this model, the foundation applies only
a reaction normal to the beam which is proportional to the beam de#ection. Non-linear
Winkler foundation models, such as hyperbolic and cubic types have also been used for
determining the behaviour of beams and plates [2}5]. In addition to this, in some studies,
the non-linear load}de#ection curve which represents the non-linear characteristics of the
foundation has been approximated by a linearized curve [6, 7]. It has generally been
assumed that the foundation reacts in compression as well as in tension in many of the
studies on the static and dynamic response of an elastic beam on an elastic foundation. The
response of beams supported by tensionless foundations is complicated by the need to
determine the contact region. Because of this mathematical di$culty, the static
and dynamic response of a beam on a tensionless foundation has received only limited
attention.

Weitsman [8] studied the static behaviour of a beam resting on a tensionless Winkler
foundation for a concentrated load and a uniformly distributed load. Weitsman [9], Rao
[10] and Choros and Adams [11] studied a beam on an elastic foundation subjected to
a moving load. Celep et al. [12] studied the dynamic response of a beam on a tensionless
foundation subjected to a concentrated load, a uniformly distributed load and
a concentrated moment. Yim and Chopra [13}15] studied the e!ects of foundation lift-o!
by idealizing the structure as a single degree of freedom system and presented a simpli"ed
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earthquake analysis of structures by considering the foundation lift-o!. In some studies, the
behaviour of the circular and rectangular plates has been investigated for various loadings
taking into account the tensionless character of the Winkler foundation [16}19]. Studies on
the behaviour of the dynamic responses of beams or plates resting on non-linear Winkler
foundations are fewer. Dumir et al. [20] and Bhaskar and Dumir [21] studied the
non-linear vibrations of orthotropic circular and rectangular plates, respectively. In both of
the preceding studies, the foundation has been assumed to be linear Winkler, Pasternak and
non-linear Winkler foundations. Cos7 kun and Engin [22] studied the non-linear vibrations
of an elastic beam resting on a non-linear tensionless Winkler foundation.

In this study, the static and dynamic responses of a free beam on a non-linear tensionless
Winkler foundation are investigated. The position of the lift-o! points (the length of the
contact regions) and the vertical displacements are obtained for linear and non-linear cases
respectively. The dependence of the contact regions on the external load in the non-linear
case, and the e!ect of the non-linearity on the contact regions and the vertical displacements
are presented in the Figures.

2. ANALYSIS OF THE PROBLEM

A homogeneous beam of length 2¸ on an elastic foundation subjected to a dynamic load
P
0
(t) is given in Figure 1. The foundation is taken as a non-linear tensionless Winkler

foundation with two parameters as follows:
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where k
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and k
3

are the linear and non-linear foundation parameters respectively. The
equation of motion for the beam shown in Figure 1 is
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where EI is the beam rigidity, w(x, t) the displacement function, o the mass density, A the
crosssectional area, d the Dirac delta function and H(x, t) is an auxiliary function. H(x, t)
represents the tensionless character of the foundation and is de"ned as H(x, t)"1 if
w(x, t)*0 and H(x, t)"0 if w(x, t)(0, where w(x, t)"0 corresponds to the lift-o! point of
Figure 1. Beam on a non-linear tensionless Winkler foundation.
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the beam. Since the geometrical and loading con"gurations of the problem are symmetric,
the de#ection of the beam is assumed to be symmetric as well. To obtain the dimensionless
equation of motion, various non-dimensional parameters are introduced as
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By applying the non-dimensional parameters into equation (2), the non-dimensional
equation of motion for the beam can be written as

gmmmm#gqq"!(k
l
g#k

n
g3)H(m, q)#P(q)d(m). (4)

Because of the random variation of P(q), equation (4) may be solved by using various
transform techniques like the Fourier and Laplace transforms. However, the inverse
Fourier or the inverse Laplace transform of a function cannot be obtained in a closed form
in some cases. Due to the di$culty in obtaining the exact solution of equation (4), an
approximate solution is sought [12, 23] as
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where ¹
1

and ¹
n`1

are the time-dependent parts of the solution function, and=
n
(m) are the

free vibration mode functions of a completely free beam which satisfy the boundary
conditions of the present problem. The term ¹

1
corresponds to the rigid translation of the

beam. Rigid rotation is not taken into account due to the symmetry. The mode functions
=
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(m) are the solutions of the di!erential equation
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(1)"0, which
represent the #exural moment and the shear force for both ends of the completely free beam.
j
n
are the solutions of the frequency equation

cosh 2j cos 2j"1 (7)

which has been obtained by using the boundary conditions in the solution of equation (6).
Some of the roots of equation (7) which represent the dimensionless frequencies are
j
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mode functions used in equation (5) can be expressed as:
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In studying the free vibrations of beams, the interest is in the natural frequencies and normal
modes for various boundary conditions such as free}free, pinned}pinned, and so on, which
constitute a set of homogeneous boundary conditions. These homogeneous boundary
conditions which are written at the ends of the beam establish the orthogonality condition.
Thus, all mode functions in equation (8) are orthogonal to each other in the interval
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(!1,#1). Substituting equation (5) into equation (4) and considering equation (6), the
following di!erential equation can be obtained:
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Multiplying equation (6) by =
m
(m), m"0, 1, 2, in which =

0
(m)"1, and using the

orthogonality condition, the following system of di!erential equations is obtained in the
matrix form:

AT$ #BT"P!Q, (10)

where A is a diagonal matrix, B is a symmetric one, P is the load vector and Q is a vector
which represents the e!ect of non-linearity. The dots in equation (10) represent
di!erentiations with respect to the dimensionless time q. The matrix elements are de"ned as
follows:
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3. NUMERICAL SOLUTION AND DISCUSSION

By assuming T"constant in equation (10), the unknown factors of T can be obtained as
T"B~1(P!Q) to represent the static behaviour of the beam. The linear static solution
of the system is obtained by taking k

n
"0, initially. Since the contact length is not



Figure 2. (a) Lift-o! points m
0

of the beam versus linear foundation parameter k
l
for non-linear foundation

parameter k
n
"0 and dimensionless load P"1. (b) Middle displacements g(0) of the beam versus linear

foundation parameter k
l
for non-linear foundation parameter k

n
"0 and dimensionless load P"1.
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known in advance, the solution is sought by an iterative scheme. Therefore, the integrals in
equation (11) are evaluated at each step and then equation (10) is solved by using
the Gauss}Jordan method and the Newton}Raphson technique. After the linear solution is
completed, the non-linear solution is carried out by taking k

n
into account. These solutions

provide the position of the lift-o! points m
0

(contact lengths) and the vertical displacements
of the beam for the linear and non-linear cases, respectively. The variation of the position of
the lift-o! points and the middle displacements for k

n
"0 are given in Figures 2(a) and 2(b)

respectively. As it is known from Weitsman [8], the positions of the contact points do not
depend on the magnitude of the load. However, contact points vary with the foundation



Figure 3. (a) Lift-o! points m
0

of the beam versus non-linear foundation parameter k
n

for linear foundation
parameter k

l
"100 and dimensionless load P"1.2s*, k

n
'0;***, k

n
(0. (b) Middle displacements g(0) of the

beam versus non-linear foundation parameter k
n
for linear foundation parameter k

l
"100 and dimensionless load

P"1. *s*, k
n
'0; ***, k

n
(0.
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rigidity. When the foundation becomes sti!er, the contact length and the vertical
displacements decrease as shown in Figures 2(a) and 2(b). This is because of the fact that the
contact length and the vertical displacements must be small in order to resist the same
external load as the foundation becomes sti!er. Full contact develops for very low
foundation sti!nesses and the contact occurs only at a point under the load for a rigid
foundation.

The variation of the contact points and the middle displacement of the beam are given in
Figures 3(a) and 3(b). When positive non-linearity is assumed (k

n
'0), the contact lengths



Figure 4. Elastic curves of the beam for k
l
"100, P"1 and various values of non-linear foundation parameter

k
n
. 2£*, k
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"0; *h*, k

n
"100 000; ***, k

n
"300 000; *s*, k

n
"700000.
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and the middle displacements decrease with respect to the linear case. However, these
increase if negative non-linearity is taken into account. In this case it is found that the
system behaves like a lumped-mass system with a non-linear spring coe$cient which can be
of softening or hardening type. This was as expected due to the fact that the foundation is
more rigid when k

n
'0 and is less rigid when k

n
(0. In the solution of the problem, the

vertical equilibrium of the beam is controlled at every step by considering

P"P
`1

~1

[k
l
=(m)#k

n
=3(m)]H(m) dm. (12)

The increase or decrease in the contact lengths and the vertical displacements due to the
non-linear foundation parameter k

n
can be expressed by considering the vertical

equilibrium of the beam. The elastic curves of the beam are presented in Figure 4. The e!ect
of the non-linearity on the displacements and the contact length can clearly be seen in this
Figure. The variation of the middle displacements and the contact points with respect to the
load for positive and negative non-linearities are shown in Figures 5(a) and 5(b) respectively.
The vertical displacements are exactly proportional to the load and the lift-o! points do not
depend on the load in the linear case [8]. However, as is seen from the Figures, the
displacements do not vary linearly with the load and the contact lengths depend on the
magnitude of the load due to the e!ect of the non-linearity. It is noted that the e!ect of the
non-linear foundation on the contact length is very small as can be seen in Figures 3(a)
and 5(b).

Equation (10) is a system of non-linear di!erential equations of second order, since the
lift-o! points are not known in advance and the presence of the non-linear foundation
parameter k

n
. By assuming TOconstant, equation (10) is solved for k

n
"0, initially. The

external load is considered as an impulsive type P(q)"e~Dq~q1D and the solution is carried
out by employing the Runge}Kutta method. An acceptable accuracy for the numerical
results is obtained by considering three mode functions in addition to the rigid translation.
While using the numerical procedure, the lift-o! points are calculated from the condition of



Figure 5. (a) Middle displacements g(0) of the beam versus dimensionless load P for k
l
"100 and k

n
"1000.

2£*, k
n
"0;*h*, k

n
'0;*s*, k

n
(0. (b) Lift-o! points m

0
of the beam versus dimensionless load P for k

l
"100

and k
n
"1000. 2£*, k

n
"0; *h*, k

n
'0; *s*, k

n
(0.
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g(m, q)"0 at each step for the time intervals of Dq. Control terms are set wherever it is
necessary for this purpose. After the solution is completed for k

n
"0, the solution including

the parameter k
n

is carried out by employing an iterative procedure. The variation of the
lift-o! points with respect to the dimensionless time is given in Figure 6. The contact length
increases with the dimensionless time but decreases as the foundation becomes sti!er. This
is an expected result if one considers the vertical equilibrium of the beam. Figures 7(a)
and 7(b) show the time variations of the middle displacements of the beam for the linear
and non-linear cases respectively. The middle displacements increase with the decrease
of the foundation rigidity for the linear case as it is seen in Figure 7(a). However, the
middle displacements decrease with the increase of the non-linearity e!ect (Figure 7(b)). For



Figure 6. Lift-o! points m
0
of the beam versus dimensionless time q for dimensionless load P"10]e~Dq~0>5D]10

at various values of k
l
. 2s*, k

l
"1; *n*, k

l
"50; *h*, k

l
"100.

Figure 7. (a) Middle displacements g(0) of the beam versus dimensionless time q for dimensionless load
P"10]e~Dq~0>5D]10 at various values of k

l
.2h*, k

l
"1; *n*, k

l
"10;*£*, k

l
"50;*s*, k

l
"100. (b) Middle

displacements g(0) of the beam versus dimensionless time q for k
l
"10 and P"10]e~Dq~0>5D]10 at various values

of k
n
. *D*, k

n
"0; *h*, k

n
"10; *n*, k

n
"100; *s*, k

n
"100.

this case, it can be concluded that the non-linearity a!ects the middle displacements as in
the static case.
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4. CONCLUSIONS

The non-linear vibrations of an elastic beam resting on a non-linear tensionless Winkler
foundation were studied by employing the Galerkin method. The static as well as the



Fig. 7. Continued.
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dynamic analyses of the problem become non-linear due to the presence of the foundation
lift-o! and the nonlinear term in the foundation model. These two factors a!ect the response
of the beam by changing the vertical displacements and the contact length of the beam for
both static and dynamic cases. It is found that the contact length of the beam depends on
the magnitude of the load due to the e!ect of the non-linear term in the foundation model,
whether it is positive or negative. It is also observed that the e!ect of the non-linear
foundation on the contact length is very small.
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